lunes, 1 de mayo de 2017

A Comparison of Approaches to Large-Scale Data Analysis

A Comparison of Approaches to Large-Scale Data Analysis

A Comparison of Approaches to Large-Scale Data Analysis


Recently the trade press has been filled with news of the revolution of “cluster computing”. This paradigm entails harnessing large numbers of (low-end) processors working in parallel to solve a computing problem. In effect, this suggests constructing a data center by lining up a large number of low-end servers instead of deploying a smaller set of high-end servers. With this rise of interest in clusters has come a proliferation of tools for programming them. One of the earliest and best known such tools in MapReduce (MR) [8]. MapReduce is attractive because it provides a simple model through which users can express relatively sophisticated distributed programs, leading to significant interest in the educational community. For example, IBM and Google have announced plans to make a 1000 processor MapReduce cluster available to teach students distributed programming.

Given this interest in MapReduce, it is natural to ask “Why not use a parallel DBMS instead?” Parallel database systems (which all share a common architectural design) have been commercially available for nearly two decades, and there are now about a dozen in the marketplace, including Teradata, Aster Data, Netezza, DATAllegro (and therefore soon Microsoft SQL Server via Project Madison), Dataupia, Vertica, ParAccel, Neoview, Greenplum, DB2 (via the Database Partitioning Feature), and Oracle (via Exadata). They are robust, high performance computing platforms. Like MapReduce, they provide a high-level programming environment and parallelize readily.

Though it may seem that MR and parallel databases target different audiences, it is in fact possible to write almost any parallel processing task as either a set of database queries (possibly using user defined functions and aggregates to filter and combine data) or a set of MapReduce jobs. Inspired by this question, our goal is to understand the differences between the MapReduce approach to performing large-scale data analysis and the approach taken by parallel database systems. The two classes of systems make different choices in several key areas. For example, all DBMSs require that data conform to a well-defined schema, whereas MR permits data to be in any arbitrary format. Other differences also include how each system provides indexing and compression optimizations, programming models, the way in which data is distributed, and query execution strategies.

The purpose of this paper is to consider these choices, and the trade-offs that they entail. We begin in Section 2 with a brief review of the two alternative classes of systems, followed by a discussion in Section 3 of the architectural trade-offs. Then, in Section 4 we present our benchmark consisting of a variety of tasks, one taken from the MR paper [8], and the rest a collection of more demanding tasks. In addition, we present the results of running the benchmark on a 100-node cluster to execute each task. We tested the publicly available open-source version of MapReduce, Hadoop [1], against two parallel SQL DBMSs, Vertica [3] and a second system from a major relational vendor. We also present results on the time each system took to load the test data and report informally on the procedures needed to set up and tune the software for each task.